
Copyright is held by the author / owner(s). 
SIGGRAPH 2011, Vancouver, British Columbia, Canada, August 7 – 11, 2011. 
ISBN 978-1-4503-0921-9/11/0008 

GPU Fluids in Production: A Compiler Approach to Parallelism

Dan Bailey Ian Masters
Double Negative∗

Matt Warner

Left to right: Squirt simulations from Sorcerer’s Apprentice c© 2010 Disney, Inception c© 2010 Warner Bros, Scott Pilgrim c© 2010 Universal

Abstract

Fluid effects in films require the utmost flexibility, from manipulat-
ing a small lick of flame to art-directing a huge tidal wave. While
fluid solvers are increasingly making use of GPU hardware, one
of the biggest challenges is taking advantage of this technology
without compromising on either adaptability or performance. We
developed the Jet toolset comprised of a high-level language and
compiler for structured grids and migrated the grid solver from our
proprietary fluid solver, Squirt1 achieving significant acceleration.

1 Introduction

Structured grids are at the heart of our Navier-Stokes fluid solver,
however providing a highly efficient GPU implementation for them
requires frequent code reuse, complex layers of meta-programming
and a fundamentally different approach to that of the CPU. In addi-
tion, performing sophisticated adjustments to simulation data often
requires exporting the data out to a 3D package such as Houdini, as
the internals of the solver are tricky to change rapidly in line with
the demands of production.

Our approach to solving this is to use the Jet language for express-
ing the logic for our structured grids and the Jet compiler to deter-
mine the optimum indexing strategy and low-level memory man-
agement for a target architecture. Separating the application logic
from the low-level implementation allows for more seamless devel-
opment in a highly production-driven environment as artists can as-
semble complex workflows while developers independently refine
the compiler framework.

2 The Language

Our Jet language is domain-specific and non-Turing complete. Un-
like much of the active research into automatic parallelisation, a
bottom-up approach is used, taking the smallest unit of computa-
tion and scaling it up to a larger system. Programming using this
language means it is easy to write code that scales well in parallel
and hard to write code that doesn’t scale well.

Fundamental new constructs are introduced, such as the colon-
bracket ’focus’ operator for handling grid offsets relative to the
current computation voxel. This simplifies common stencil com-
putation and coupled with an otherwise familiar syntax makes the
code easier to understand for both developers and artists.

∗e-mail:{drb,iim,mw}@dneg.com
1originally co-authored by Marcus Nordenstam and Robert Bridson

3 The Compiler

Our Jet compiler is built upon the LLVM Compiler Infrastructure
[Adve 2003], and uses their intermediate representation (IR) and
optimisation pass framework as the foundation for applying par-
allel transformations. A Bison-based parser and code generation
phase produces valid ’parallel-aware’ LLVM IR, which the trans-
lation passes can adapt for sequential or parallel execution. The
resulting IR is then lowered using the X86 backend for the CPU, or
the PTX backend for NVidia GPUs. Using LLVM, the Jet compiler
generates NVidia PTX instructions directly, obviating the need to
program intricate grid logic in low-level parallel languages such as
CUDA or OpenCL.

The indexing strategy for parallel computation is as shown in
[Bailey 2010] and relies on the compiler to optimise desired grid ac-
cess patterns for memory bandwidth through careful use of shared
memory. Working in a highly atomic, modular way, the compiler is
free to perform late-stage and inter-kernel optimisations that would
just not be feasible with a more fixed compilation cycle.

503 Smoke Simulation Arch Time Speedup
CPU (GCC 4.1.2) X5570 29m34s 1.0x
CPU (Jet 1.3) X5570 14m00s 2.11x
GPU (Jet 1.3) FX4800 07m19s 4.04x
GPU (Jet 1.3) C2050 01m07s 26.7x

The single-threaded X5570 CPU solver is twice as fast when us-
ing the Jet compiler over the original codebase and demonstrates a
26.7x speedup when targeting the NVidia C2050 Tesla GPU.

4 Conclusion

The Jet language and compiler provides a simple, efficient way
of tackling problems involving stencil computations for structured
grids. Target-specific optimisations are moved upstream from com-
plex layers of templates and macros to form clean, modular passes.
These passes are applied in turn to transform each unit of computa-
tion to take advantage of features of the requested architecture.

References

ADVE, V., AND LATTNER, C. 2003. LLVA: A Low-level Vir-
tual Instruction Set Architecture. In Proceedings of the 36th an-
nual ACM/IEEE international symposium on Microarchitecture
(MICRO-36).

BAILEY, D., AND MASTERS, I., 2010. GPU fluids in production:
Accelerating the pressure projection, July 25. SIGGRAPH Talk.


