
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SIGGRAPH 2015 Talks, August 09 – 13, 2015, Los Angeles, CA.
ACM 978-1-4503-3636-9/15/08.
http://dx.doi.org/10.1145/2775280.2792544

Distributing Liquids using OpenVDB

Dan Bailey Harry Biddle Nick Avramoussis Matthew Warner
Double Negative∗

Distributed Simulation using the Dynamo FLIP Solver (colour indicates the process). Liquid simulations from Interstellar (c©2014 Warner
Bros. Entertainment Inc. and Paramount Pictures Corporation) and Exodus: Gods and Kings (c©2014 20th Century Fox)

Abstract

From large, stormy oceans to cities being obliterated by tsunamis,
demands on liquid simulations in Visual Effects are ever-growing
in terms of complexity and scale. Improved performance through
multi-threading alone is no longer proving sufficient. We present a
light framework built on OpenVDB and OpenMPI that efficiently
distributes sparse volumetric and spatially-organised point data.
This greatly improves performance and increases our data sizes in
production.

1 Introduction

Driven by the need for bigger and faster simulations, we have in-
troduced a distributed simulation framework to our in-house FLIP
fluid solver Dynamo. Features of our framework include:

• Spatially-organised points coupled to an OpenVDB grid [Bai-
ley et al. 2014].

• Communication of sparse OpenVDB grid topologies between
processes.

• Adaptive load-balancing of an evolving point set.

• Identical results regardless of how the data is organised across
the machines.

2 Our Distribution Framework

In Dynamo a VDB grid stores which process owns each voxel at
any point in time, offering a flexible mechanism through which to
load-balance the processes. The sparsity of OpenVDB requires ex-
tra computation to determine where voxels should be sent, yet even
in the pressure projection we are able to hide network communica-
tion behind computation [Höfler et al. 2007]. By coupling points
to voxels we are able to share point data between processes as eas-
ily and efficiently as volumetric data. A cross-process point sorting

∗e-mail:{drb,hb,nna,mw}@dneg.com

algorithm mantains the spatial organisation of the points as the sim-
ulation evolves. Our framework targets FLIP liquid simulations, but
is built to be extensible to any OpenVDB-based simulation.

3 Deterministic Simulations

FX artists demand repeatable, deterministic results as they refine
a simulation. Our framework provides identical results regardless
of the data organisation across machines. To achieve this, order-
dependent operations such as global summations are done by a re-
duction of each leaf of the OpenVDB grid prior to the root process
performing an ordered reduction of the resulting data.

4 Results

Sim Machines 1 2 3 4 5
Av Frame Time 2200s 1427s 1082s 856s 741s

Perf Increase 1.00x 1.54x 2.03x 2.57x 2.97x
Mem Per Proc 80GB 42GB 31GB 25GB 15GB

We demonstrate the scaling and memory usage of Dynamo across
increasing numbers of machines with a tank-style city tsunami
scene. 1.5 billion FLIP points, memory usage is peak.

5 Conclusion

Our framework efficiently and determinstically distributes FLIP
liquid simulations using two well-known open-source libraries.
Spatially-organising points and adaptive load-balancing enables us
to achieve scalable distribution across multiple machines. Distribut-
ing our Dynamo fluid solver has enabled us to greatly improve the
efficiency and turn-around time of our FX artists in production.

References

BAILEY, D., WARNER, M., AND BIDDLE, H. 2014. Packing the
water pipe. In ACM SIGGRAPH 2014 Talks, ACM, New York,
NY, USA, SIGGRAPH ’14, 10:1–10:1.

HÖFLER, T., GOTTSCHLING, P., LUMSDAINE, A., AND REHM,
W. 2007. Optimizing a conjugate gradient solver with non-
blocking collective operations. Elsevier Journal of Parallel
Computing (PARCO) 33, 9 (Sep.), 624–633.

