
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
SIGGRAPH 2015 Talks, August 09 – 13, 2015, Los Angeles, CA. 
ACM 978-1-4503-3636-9/15/08. 
http://dx.doi.org/10.1145/2775280.2792553 

 

Data-driven Background Crowds in Exodus: Gods and Kings
Martin Prazak Mungo Pay Damien Maupu Davide Vercelli Ian Masters

Double Negative Ltd.∗

Figure 1: Stills of background crowds in Exodus: Gods and Kings. All images c©2014 20th Century Fox.

1 Introduction
Large virtual worlds require large virtual crowds. One of the main
themes of Exodus is a clash of ancient civilisations, represented via
virtual background crowds in a large number of shots. To generate
these crowds, we used an in-house crowd solution, whose develop-
ment was aimed at background crowds for photorealistic scenes.

VFX crowds are subject to specific requirements, because they are
used to enliven and extend crowd shots captured by a camera. Each
shot consists of three layers – hero characters (usually real actors
shot on set), crowd-anim (hand-animated) and procedural back-
ground crowds. To retain scene consistency, the background crowds
must join seamlessly with other layers.

2 Manual or Procedural?
Large numbers of background characters in crowd scenes necessi-
tate some level of procedural generation. Traditional approaches (in
tools like Massive or Houdini) use a combination of data-driven and
procedural animation synthesis, steered by behavioural simulation
(particles/boids, fuzzy logic). While per-agent simulation leads to
a flexible and powerful simulation framework, small setup changes
can lead to different and unpredictable outcomes. For a crowd artist,
it can be frustrating if a minor tweak of a seemingly unrelated pa-
rameter causes large and unpredictable knock-on effects.

While our system includes a boid simulation module based on so-
cial forces, the most used functionality involves artist-driven vector
fields, influence regions and keyframed behavioural switches with
randomization. Data-driven behaviour has proven to be favoured
by artists for its controllability and predictable results. Agent in-
stantiation is handled in a similar way: with probability maps and
conditions, the user can create a large number of characters with
randomized properties, while retaining a tight control of special
cases.

Motion synthesis utilises artist-provided animation clips and com-
bines them using state machines and blend trees. Artists often pro-
vide tailor-made clips to achieve a particular look-and-feel, which
would be hard to synthesize. Artists can also animate whole groups
of characters, allowing complex agent interaction. Our system pro-
vides tools for instantiating these, and for tweaking their trajectories
and time offsets to allow the artist to achieve the desired outcomes.

∗E-mails: {map,mungo,dmu,dv,iim}@dneg.com

This approach leads to “crowd compositing” – creating large simu-
lations by combining pre-simulated vignettes.

However, users expect some motion editing to be performed auto-
matically (with the ability to override results if necessary). Firstly,
during the setup stage of a motion state machine, possible transition
points are detected automatically. Secondly, the animations have
to be applicable to any similar character, making a semi-automatic
retargetting procedure necessary. Finally, footstep cleanup and
ground adaptation have to be performed for any locomotion clips.

3 Under the hood
From production experience, we have found out that off-the-shelf
3D software does not lend itself well to crowd requirements; our
system is designed to address the most common shortcomings.

In the core of our system there is a flat shared memory data struc-
ture, created during simulation initialisation by collecting per-frame
storage requirements of all nodes. Because the data layout and ac-
cess requests are known beforehand, we can create a data depen-
dency graph with parallel branches evaluated simultaneously. This,
combined with the use of instanced geometry and shaders, allows
us to display up to 100k agents in close-to-realtime.

4 User interaction
To facilitate a variety of workflows, we have developed a number
of tools to ease the setup of scenes and drive simulation properties.
These include a painting tool so that artists can paint on geometry
to trigger behaviours, and Python integration for the more technical
artists so that scene setups and agent behaviours can be scripted.

5 Rendering
The large number of characters in a scene makes the use of optimi-
sation techniques necessary – a typical scene with characters rep-
resented as animated meshes would occupy 3 orders of magnitude
more space than a corresponding bone-transform representation.

A classical approach of mesh instancing is not applicable to crowd
scenes, because the probability of two characters of the same vari-
ant displaying the same frame of the same clip is very low. Our
system makes use of 3 main techniques to tackle this problem.
Firstly, we use a proprietary file format storing bone transforma-
tions to represent the simulation data (with undeformed mesh and
skinning stored separately); the mesh deformation is evaluated in
the renderer, saving a significant amount of disk space. Secondly,
we use a “procedural” with lazy evaluation, i.e. each character is
instantiated only when a ray passes through its bounding box. This
makes sure that skinning of occluded characters and characters out-
side camera frustrum is not computed. Finally, we reuse most of
look data, computing most of character variation procedurally.


