
A Flexible Rigging Framework for VFX and Feature Animation

Jesus R. Nieto Theo Facey Sylvain Brugnot

Double Negative∗

Left, middle: previs for ”Rubix”, an internal animated short. Right: performance comparison for a standard rig

Abstract

We present the work recently undertaken to ensure that Pinocchio,
our long-standing, production-proven modular rigging platform, can
meet the demands of both VFX and Animated Features. By transi-
tioning to a fully modular, DCC-agnostic framework we enable rigs
to be built across a number of host applications and leverage a va-
riety of evaluation back-ends; this in turn allows us to target differ-
ent stages in our pipeline more efficiently, by offering high perfor-
mance to animators and easy prototyping to riggers, while retaining
the ability to share assets with other companies if needed. Further-
more this approach involves comparatively small upfront develop-
ment and artist training costs.

Keywords: animation, rigging, DCC-agnostic, Fabric, KL

Concepts: •Computing methodologies→ Animation;

1 Introduction

Today’s VFX companies are required to produce ever-greater num-
bers of increasingly complex CG characters in ever-shorter time
frames. In Marvel’s Avengers: Age of Ultron, Ultron’s rig comprised
thousands of moving parts, for a total of over 16 million polygons.
Animated features, on the other hand, often use simpler rigs but can
have many more of them: Pixar’s Monsters University, for example,
featured over 400 characters.

To meet these demands, some of the larger Feature Animation com-
panies have built their own standalone animation platforms [Watt
et al. 2014], which offer great performance and are tailored to the
artists needs. Unfortunately, the substantial development and train-
ing costs required put this approach beyond the reach of most other
companies, and although they result in highly optimised rigs, the
long prototyping periods involved are impractical for the shorter time
frames of VFX and Broadcast.

Standard animation packages like Maya, on the other hand, enable
more agile rigging workflows but have only just begun to address this
explosion in complexity. As an example, a typical production-quality
character rig in Maya 2014 contains over 3000 nodes and runs no
faster than 15fps, resulting in a frustrating experience for riggers and

∗e-mail:{crn,tdf,sylv}@dneg.com

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s). c© 2016 Copyright held by the owner/author(s).

SIGGRAPH ’16, July 24-28, 2016, Anaheim, CA,

ISBN: 978-1-4503-4282-7/16/07

DOI: http://dx.doi.org/10.1145/2897839.2927463

animators alike. While the recent introduction of multi-threaded eval-
uation has gone a long way towards alleviating performance issues,
there is still room for improvement.

2 Our Approach

Our in-house modular rigging system, Pinocchio, lets the user create
rigs by building and connecting individual modules (eg, ’arm’, ’leg’,
’spine’). Whereas these were previously defined in Maya-specific
terms and stored as MEL scripts, we now use a DCC-agnostic repre-
sentation to encode the rig as a combination of ’rig units’. A Python
translation layer is then responsible for turning this high-level de-
scription into a set of low-level building instructions in the host ap-
plication.

In the same manner, the algorithms used in our rigs had originally
been implemented using the Maya C++ API, creating a dependency
we were keen to remove. We opted instead for Fabric Software’s
KL language, which offers a good compromise between portability,
ease of coding and performance. While the KL integration in Maya
provided by Fabric is very flexible, in order to achieve maximum
performance we provide our own integration in the form of highly
optimised C++ wrapper nodes, which are procedurally generated in
order to reduce development times.

By implementing different translation layers it therefore becomes
possible to leverage the strengths of different platforms and compu-
tational back-ends: within Maya, the same rigs can be built using
standard nodes for maximum compatibility when outsourcing, fully
editable Fabric nodes when rig prototyping, and highly optimised but
opaque custom KL/C++ nodes for animating. We are also investigat-
ing how this mechanism can be used to deploy these rigs in Houdini
for simulation purposes or in Riot, our in-house crowd system.

3 Results

By expressing rigs in non-DCC-specific terms, the new framework
allows riggers to focus more on broader rig behaviour and less on
implementation details, which results in simpler rig graphs and faster
prototyping. Using a combination of KL and C++ enables us to of-
fer animators clear performance gains over standard Maya rigs while
keeping development costs low. Overall, the flexible nature of the
system lets us easily tailor the rig implementation to specific usage
scenarios, allowing us to take on the challenges of both VFX and
Feature Animation.

References

WATT, M., COUMANS, E., ELKOURA, G., HENDERSON, R.,
KRAEMER, M., LAIT, J., AND REINDERS, J. 2014. Multithread-
ing for Visual Effects, 1st ed. A. K. Peters, Ltd., Natick, MA,
USA.

http://dx.doi.org/10.1145/2897839.2927463

