
A JIT Expression Language for Fast Manipulation of VDB Points
and Volumes

Nick Avramoussis
DNEG

nna@dneg.com

Richard Jones
DNEG

rhj@dneg.com

Francisco Gochez
DNEG

fjg@dneg.com

Todd Keeler
DNEG

tdk@dneg.com

Matt Warner
DNEG

mw@dneg.com

Figure 1: This expression language has been incorporated into our in-house scattering tools in Clarisse, built on VDB points.
Together these create a flexible workflow for handlingmassive amounts of geometry, e.g. the city of LA in Blade Runner 2049∗.

ABSTRACT
Almost all modern digital content creation (DCC) applications used
throughout visual effects (VFX) pipelines provide a scripting or
programming interface. This useful feature gives users the freedom
to create and manipulate assets in bespoke ways, providing a pow-
erful and customizable tool for working within the software. It is
particularly useful for working with geometry, a process heavily
involved in modelling, effects and animation tasks. However, most
widely available examples of these are either confined to their host
application or ill-suited to computationally demanding operations.
We have created an efficient programming interface built around
the open-source geometry format, OpenVDB, to allow fast geom-
etry manipulation whilst offering the required portability for use
anywhere in the VFX pipeline.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; Graphics file formats; Modeling and simulation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DigiPro ’18, August 11, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5895-8/18/08. . . $15.00
https://doi.org/10.1145/3233085.3233087

KEYWORDS
expression language, just-in-time, geometry manipulation
ACM Reference format:
Nick Avramoussis, Richard Jones, Francisco Gochez, Todd Keeler, and Matt
Warner. 2018. A JIT Expression Language for Fast Manipulation of VDB
Points and Volumes. In Proceedings of The Digital Production Symposium,
Vancouver, BC, Canada, August 11, 2018 (DigiPro ’18), 4 pages.
https://doi.org/10.1145/3233085.3233087

1 INTRODUCTION
The success of Alembic [Sony Pictures Imageworks 2018a], Open-
VDB [Dreamworks Animation 2018], USD [Pixar Animation Studios
2018] and other open-source geometry and scene representation for-
mats is largely due to the ability to use them in all parts of the VFX
pipeline. Their open-source nature allows integration into almost
any parent application and, as such, caters to the ever-changing
needs of a modern VFX studio.

OpenVDB in particular offers an efficient, portable and flexible
data structure for the storage of volumetric data - qualities that
lead to adoption at DNEG and our development of an extension to
incorporate point data. With its heavy integration into our pipeline,
it quickly became apparent that exposure of a unifying interface
would be the perfect tool to maximize our ability to take advantage
of this portability. Whilst OpenVDB does include some Python
bindings, we found that a more efficient and specialised approach
was necessary to expose the finer-grained control we desired.

To tackle this, we have developed a new expression interface for
the direct manipulation of point and voxel data in VDBs that is:
∗©2017 ALCON ENTERTAINMENT, LLC., WARNER BROS. ENTERTAINMENT INC.
AND COLUMBIA PICTURES INDUSTRIES, INC. ALL RIGHTS RESERVED.

https://doi.org/10.1145/3233085.3233087
https://doi.org/10.1145/3233085.3233087

DigiPro ’18, August 11, 2018, Vancouver, BC, Canada N. Avramoussis, R. Jones, F. Gochez, T. Keeler and M. Warner

APPLICATION

COMPILER

LEXER PARSER AST

ENGINE

CODE GEN

LLVM IR
int offset = 12345;
float threshold = 0.5;

if (rand(offset+i@id) > threshold){
 addtogroup("dead");
}

CODE SNIPPET VDB

REGISTER VDB

EXECUTE

Figure 2: The structure of this tool andhow it integrateswith a chosen application, brokendown into the twomain components,
the compiler and the execution engine.

• Fast - speed comparable to a compiled, multi-threaded plugin
• Portable - transferrable across DCCs and applications
• Easy-to-use - requires minimal programming experience

This has since been used to provide greater artistic control
throughout the pipeline at DNEG with exposure in Houdini [Side
Effects Software Inc. 2018], Clarisse [Isotropix 2018] and from the
command line. The flexibility it provides has been particularly use-
ful on recent shows such as Blade Runner 2049 (Fig. 1) and Pacific
Rim: Uprising as part of our in-house scattering and point toolset.

2 PORTABLE LANGUAGE DEVELOPMENT
The integration of generic scripting languages such as Python,
Lua etc. into DCCs offers users of different applications a famil-
iar interface whilst exposing custom application and task-specific
functionality. However, they are commonly unable to provide the
performance requirements to operate on heavy data structures such
as representations of geometry. A custom operation on billions of
points, vertices or voxels requires lower level instruction mapping
and a good multi-threaded framework to achieve practical results.
Such tasks instead tend towards compiled methods such as C++ plu-
gins, but these bring with them the issues of portability, complexity
and extensibility - with limits on the amount of functionality that
can be practically exposed to the user.

To overcome these limitations we looked to the use of just-in-
time (JIT) compilation, an approach that has been particularly suc-
cessful when coupled with a custom and task-specific frontend.
Shader languages, such as OSL [Sony Pictures Imageworks 2018b]
and Houdini’s VEX language are good examples of this. These are
often exposed much like scripting interfaces, but their compilation
and targeted design results in far more efficient execution, mak-
ing them suitable for geometry manipulation. Whilst extremely
powerful, we encountered limitations with these existing solutions
such as lacking flexibility for supporting new geometry types or

ill-suited frameworks for more generic geometric operations (e.g.
the creation and deletion of data). Therefore, following a similar
design we chose to develop a new language, combining JIT compila-
tion through LLVM [LLVM Developer Group 2018] with OpenVDB
geometry. The result provides a transferrable interface for fast ma-
nipulation of production assets that can be easily integrated into
many target applications.

2.1 Task-Specific and Parallel By Design
Shader languages offer a nice solution to the boilerplate code re-
quired with other less task-specific languages, in our case allowing
an easy element-centric expression interface that can be efficiently
parallelised. Our design focuses on the manipulation of the ‘low-
est’ element in a VDB tree, i.e. a point or voxel, executing the
user-supplied expression over each element independently. This
iteration process is ‘embarassingly parallel’ and when coupled with
our highly-optimised, JIT-compiled functions is extremely efficient
and capable of handling very large datasets.

3 IMPLEMENTATION
The implementation can be broken down into twomain components
(demonstrated in Fig 2): the LLVM function generation that takes
an input expression and JIT compiles it into a custom function to be
run on each geometric element; and the OpenVDB component that
registers access to the supplied VDBs and subsequently performs
execution over them.

3.1 LLVM function generation
The use of LLVM allows us to generate custom compiled functions
from our expression language, and comes with built-in support for
a number of optimisation and validation passes. As shown in Fig.
2, we begin by parsing an input code snippet to create an abstract
syntax tree (AST), a representation of the syntactic constructs that

A JIT Expression Language for Manipulating VDB Points and Volumes DigiPro ’18, August 11, 2018, Vancouver, BC, Canada

occur in the supplied code. This is traversed by our code generation
framework which converts each node of the AST into LLVM’s
intermediate-representation (IR). Finally, the resulting IR is JIT-
compiled and handed to our engine for later execution. The parsing,
IR generation and JIT-compilation are very fast operations and due
to the intensive optimisation passes offered by LLVM, the resulting
functions are of comparable speed to ahead-of-time compiled C++
code (Table 1). We also make sure to decouple this process from any
particular input VDB, therefore only requiring a single compilation
pass for any number of inputs. Instead, each unique input simply
undergoes a fast registration step before execution to expose the
correct data to the compiled function.

3.2 OpenVDB integration
In our expression interface we allow read-and-write access to Open-
VDB point attributes and voxel values. Our OpenVDB bindings give
our compiled functions direct access to the values within any sup-
plied VDB trees. To do so, on execution we bind handles to point
attributes/volumes and store them on our execution engine. To
ensure we only require a single code generation pass for any num-
ber of VDBs we do not compile these directly into IR. Instead we
insert IR instructions to retrieve these handles from the engine at
runtime1.

For multi-threaded execution we leverage OpenVDB’s node
structure [Museth 2013]. In this way, we parallelise over each node
in the supplied VDB trees, executing our function on each element
(point/voxel) they contain. This execution pattern fits intuitively
into OpenVDB’s data structure, inherently load-balancing over its
spatially-organised nodes.

3.3 Available operations
Attribute expressions are written in a simple C-like language with
many of the usual syntactic constructs e.g. conditionals, function
calls, binary operators etc. (Figs. 3 & 4). We incorporate element
accesses through a specific identifier, @ (inspired by Houdini’s VEX
language), to easily differentiate from local variable usage. The
function calls we provide can cover a large amount of functionality,
from basic mathematical operations, noise and random number
generation to element-specific (and geometry-specific) behaviour
such as collecting points into groups.

Whilst currently each element only has access to its own at-
tributes/values, it should be possible to extend to allow access to
other elements in future. This could allow even more complex op-
erations like smoothing surfaces or accessing nearby points for
neighbourhood operations.

4 PRODUCTION IMPACT
The motivation for this project arose during the development of
OpenVDB Points at DNEG [Museth et al. 2015]. Although originally
designed as a particle framework for simulation, it was primarily
used for data interchange due to a lack of frontend tooling. The
flexibility offered by alternative point formats (e.g. in third-party
DCCs) with more comprehensive toolsets raised further concerns
over adoption on a wider scale. To succeed as a toolkit that users
1A similar method is used for other arbitrary external data e.g. time or frame number,
allowing use of variable data without requiring re-compilation.

could directly interact with, a fast way to expose a lot of custom
and controllable functionality became critical. Following previous
successes with LLVM [Bailey et al. 2011] and recognising the flexi-
bility arising from geometry shader languages such as VEX, this
tool was conceived as a solution to this problem. Once this cus-
tom expression interface was exposed for OpenVDB Points, we
saw a huge increase in interest in the format as a whole. Then,
due to the nature of the integration into OpenVDB, and the sim-
ilarities between its volume and point storage, it was relatively
straightforward to extend this framework to provide manipulation
of volumetric data as well. VDBs are now the standard for storage
of volumetric and point data at DNEG, with the ability to manip-
ulate them directly and deterministically throughout the pipeline
proving to be a significant asset.

5 EXAMPLE USE
In the following, we discuss a couple of different use-cases for this
tool and demonstrate the simplicity of the code required to perform
such tasks. First we consider an example for FX simulation and
then, further downstream in the pipeline, manipulation of FX data
in Lighting.

1 // get timestep
2 float dt = 1.0f / (4.0f * 24.0f);
3 // gravity
4 vector gravity = {0.0f, -9.81f, 0.0f};
5 // drag
6 vector dV= {2.0f, 0.0f, 0.0f} - v@v;
7 float lengthV = length(dV);
8

9 float Re = lengthV * @rad / 1.225f;
10 float C = 0.0f;
11 if (Re > 1000.0f) C = 24.0f / Re;
12 else C = 0.424f;
13 // calculate drag force
14 vector drag = 0.5f * 1.2f *
15 C * lengthV * deltaV * 4.0f * 3.14f *
16 pow(@rad, 2.0f);
17 // update velocity
18 v@v += (gravity -
19 drag / ((4.0f / 3.0f)
20 * 3.14f * pow(@rad, 3.0f)) * dt;
21 // update position
22 v@P += v@v * dt;

Figure 3: A particle simulation step using gravity and drag
against a constant wind force.

5.1 Example: Simulation
The flexibility given by this expression interface can be used to very
quickly create operators such as those required in simple particle
or volumetric simulations. For example, consider a particle system
acting with respect to a collection of independent motions or driven
by external influences - we are able to very easily create this kind

DigiPro ’18, August 11, 2018, Vancouver, BC, Canada N. Avramoussis, R. Jones, F. Gochez, T. Keeler and M. Warner

of operator using our expression interface as in Fig. 3. As these
operators are often executed many times in sequence, performance
is extremely important. We show in Table. 1, the performance of
our JIT-compiled expression matches very closely to that of an
equivalent operator written in C++.

1 int offset = 12345;
2 float threshold = 0.5;
3 // remove points
4 if (rand(offset+i@id) > threshold) {
5 addtogroup("dead");
6 }

Figure 4: Decimating points in a set using a percentage
threshold.

5.2 Example: FX to Lighting
Having the ability to modify geometry in this way is important
in areas beyond FX simulation. However, making modifications
or tweaks to geometry is not always easy outside of packages
designed explicitly for it, for example in rendering applications
such as Clarisse. Integrating our expression interface into such
applications facilitates on-the-fly modifications without requiring
costly back-and-forth between FX artists and lighters.

This level of control has seen great use in this context at DNEG,
with lighters able to perform many tasks without having to send
data back up the pipeline. Some examples we have seen being used
include:
• Randomizing scattering ids for instancing.
• Modifying colours, orientation, scales and velocities of scat-
tered point data.
• Decimating excessively large point sets.

Sample code for this latter example can be found in Fig. 4.

Table 1: Performance of C++ implementations vs our JIT-
compiled expression examples running on 32 core Intel
Xeon 3.10Ghz CPU with 64GB RAM.

Code Example # elements C++ JIT Performance

Fig. 3 50m points 0.43s 0.58s 0.74x
Fig. 4 50m points 2.69s 2.70s 0.99x

6 CONCLUSION
This tool has shown to have production impact beyond our orig-
inal expectations. We have found that by exposing this interface
in multiple applications (e.g. Houdini, Clarisse, command-line) we
have been able to speed up both user and developer workflows,
allowing on-the-fly edits to assets and exposing access to the data
in ways that can also be used in the creation of more advanced
tools. Whilst the language and the design itself follow other tools
before it, the portability arising from pairing to an open-source

technology such as OpenVDB has been invaluable to its success.
This further demonstrates the importance of transferrable technolo-
gies in a VFX pipeline built upon so many different applications.
Interestingly however, the decoupled nature of our compiler and
execution engine suggest that such a tool could also in the future
be extended to support other types of geometry beyond VDBs.

ACKNOWLEDGMENTS
The authors would like to thank Dan Bailey, Harry Biddle and
James Bird for their important work on the original development
of this tool and their great contributions to the OpenVDB Points
framework. We would also like to thank Khang Ngo for his work
on the Clarisse scattering toolkit at DNEG, and finally, Ken Museth
and those at Dreamworks for open-sourcing OpenVDB.

REFERENCES
Dan Bailey, Ian Masters, and Matt Warner. 2011. GPU Fluids in Production: A Compiler

Approach to Parallelism. In ACM SIGGRAPH 2011 Talks (SIGGRAPH ’11).
Dreamworks Animation. 2018. OpenVDB. (2018). http://openvdb.org/
Isotropix. 2018. Clarisse. (2018). https://isotropix.com/
LLVM Developer Group. 2018. LLVM. (2018). https://llvm.org/
Ken Museth. 2013. VDB: High-resolution Sparse Volumes with Dynamic Topology.

ACM Trans. Graph. 32, 3, Article 27 (July 2013).
Ken Museth, Dan Bailey, Jeff Budsberg, John Lynch, and Andrew Pearce. 2015. Open-

VDB. In ACM SIGGRAPH 2015 Courses (SIGGRAPH ’15).
Pixar Animation Studios. 2018. Universal Scene Description. (2018). https://graphics.

pixar.com/
Side Effects Software Inc. 2018. Houdini. (2018). https://sidefx.com/
Sony Pictures Imageworks. 2018a. Alembic. (2018). http://opensource.imageworks.

com/
Sony Pictures Imageworks. 2018b. Open Shading Language. (2018). http://opensource.

imageworks.com/

http://openvdb.org/
https://isotropix.com/
https://llvm.org/
https://graphics.pixar.com/
https://graphics.pixar.com/
https://sidefx.com/
http://opensource.imageworks.com/
http://opensource.imageworks.com/
http://opensource.imageworks.com/
http://opensource.imageworks.com/

	Abstract
	1 Introduction
	2 Portable Language Development
	2.1 Task-Specific and Parallel By Design

	3 Implementation
	3.1 LLVM function generation
	3.2 OpenVDB integration
	3.3 Available operations

	4 Production Impact
	5 Example Use
	5.1 Example: Simulation
	5.2 Example: FX to Lighting

	6 Conclusion
	Acknowledgments
	References

