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Figure 1: Render time estimation architecture

ABSTRACT

Rendering a scene is the most repeated and resource intensive task,
at the core of a VFX facility. Each render can consume significant
compute resources, which are expensive and finite. The number
of renders (iterations) required to final a shot varies based on the
creative and technical complexity of the scene. Getting a reliable
estimate of the render time beforehand could prove useful from a
budgeting and scheduling perspective. In this poster we present
a novel approach to estimate render time of a scene based on a
machine learning model built upon previous renders on a show.
Each input vector for training is encoded from direct constituents of
a scene like assets, looks, lights and render parameters like number
of samples and resolution. Renders are categorized into two buckets:
less than an hour and greater than an hour and two models are built
for estimation. The estimated results for test scenes are verified
against the actual render time for measuring accuracy.
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+ Computing methodologies — Supervised learning by re-
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1 INTRODUCTION

Rendering algorithms have been a topic of extensive research over
the last few decades. The world has seen significant advancement
in techniques ranging from scan-line renders to path tracing, and
most recently real-time rendering of light fields. Render time anal-
ysis[Wimmer and Wonka 2003] have mostly been conducted on
isolated hardware with an aim to benchmark performance of a
certain algorithm, or to compare speedup across hardware/GPU.
There is sparse literature on estimating render times at a macro
scale for a post-production facility to help make informed decisions
for scheduling[Ricklefs et al. 2017]. This poster is an attempt to
share a solution which is currently being trialled at DNEG.

2 MOTIVATION AND CONTRIBUTION

Estimating render times are a critical task within a VFX facility.
Owing to the complex workflows involved in rendering an image
and the variety of inputs which impact the compute time, it can be
quite challenging. The novel approach here is to parse a scene to be
rendered and collate information about the parameters which are
proven to influence render times. By proven, we mean that it either
has a strong correlation on the dependent variable or influences
another independent variable statistically. The proposed approach
involves transforming any user setting applied either directly or
indirectly to a render to a measurable entity. The current approach
is focused towards Isotropix Clarisse ™ as the primary renderer,
but could be extended to other renderers.

3 METHODOLOGY

The architecture to estimate render time is described in Figure 1
The two main data sources are rendered scenes and render logs. It is
probably a fair assumption to make that the number of hero assets
during the lifetime of a show would not change drastically, at least
by half-way into production. More often than not, each creative
iteration is improving the overall look, lighting or tweaks in a scene
to final a shot for full resolution renders. Hence, quantifying looks
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gets trickier than geometry. This poster tries to establish average
render time as a function of constituents that make a render.

Render time = f(Geometry, Looks, Lighting, User Settings) (1)

3.1 Preprocessing engine

Application of machine learning involves use of a good dataset
and extraction of relevant features. The goal of the preprocessor
is to prune outliers - the mean is influenced by occasional spike
(or dip) of render times across a few frames. Limiting the absolute
difference of mean and median render times across the entire frame
range helps eliminate such outliers. In addition, since the mean can
be influenced by the size of the denominator, a minimum frame
range criteria was introduced - only renders with at-least 50 frames
were chosen for training.

3.2 Feature extraction

The feature extractor outputs an encoded vector by parsing every
scene. The key is to identify components/settings from a scene
that can be measured as well as prove to influence render time. For
example, every material has a variety of inputs that can be con-
trolled to achieve a certain look under certain lighting. Hopefully
this poster encourages thoughts on ways to quantify and measure
parameters from user input (scene). Finally, only those features that
have a high correlation on a given movie, are selected for training a
machine learning model. Below is a list of most common features
that are extracted per scene:

o Geometry based metrics : Polygon count/primitive count

o Look based metrics :

— Count of texture files or maps

— Count of materials

— Clarisse specific : Count of shading layers, count of mate-
rial assignments, depth of shading graph, number of nodes
in the shading graph

Lighting related : Global Illumination, Count of lights

Render settings : Resolution of image, Number of anti-aliasing

samples, number of channels (AOV), Render quality

Camera based metrics : Motion blur sample count

3.3 Training

Training was conducted once on each movie, by splitting renders
into a mutually exclusive train and test set. All renders that made
the dataset were from production. Calculation of correlation co-
efficient across input dimensions and also against the dependent
variable gives a notion of importance. It was found that classifying
renders into two bags: less than an hour and greater than an hour
was more efficient in estimation, over the unpartitioned dataset.
These categories could seem highly oversimplified to begin with,
however they were certainly intuitive and valuable from a schedul-
ing perspective. The training phase builds two models per show, a
linear and a support vector regression (SVR) model. A Grid-search
technique was used to vary the input parameters to the SVR. The
model with the least error was chosen.
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Table 1: Accuracy using Support Vector regression model

Movie code Category Accuracy(%)
Movie 1 Greater than an hour 70.3
Movie 1 Less than an hour 65.8
Movie 2 Greater than an hour 69.4
Movie 2 Less than an hour 67.5
Movie 3 Greater than an hour 54.8
Movie 3 Less than an hour 66.6

Table 2: Accuracy using Linear regression model

Movie code Category Accuracy(%)
Movie 1 Greater than an hour 61.5
Movie 1 Less than an hour 62.1
Movie 2 Greater than an hour 53.7
Movie 2 Less than an hour 63.5
Movie 3 Greater than an hour 35.5
Movie 3 Less than an hour 64.4

3.4 Estimation

The estimation engine uses the same feature extractor as in train-
ing, to parse a scene which it hasn’t encountered before. Using
regression model(s) from training phase, the predictor outputs an
estimated average render time per frame for both categories. The
more accurate result is chosen.

4 RESULTS

The results are verified across all renders on a show. Movie 1 was FX
heavy, Movie 2 had predominantly creature based shots, whereas
Movie 3 was digi-double and CG environment creation focused. The
regression models used mean absolute percentage error (MAPE) as
the error metric over a five-fold cross validation. The accuracy of
the techniques, per category using SVR and linear model are shown
in Table 1 and Table ?? respectively.

5 CONCLUSION AND FUTURE WORK

The initial results by testing the hypothesis on three movies show
that the support vector model works well irrespective of the cate-
gory of the render. Linear models work reasonably well on renders
less than an hour per frame, which is quite acceptable. Further steps
could be taken to incorporate qualitative aspects of a scene; for
example material categories. Investigating other prediction algo-
rithms for better accuracy and fine tuning learning parameters is
definitely something which will be refined in the future.
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