
Taming the Swarm: Rippers on Pacific Rim Uprising
Martin Pražák

Double Negative, Lead RnD
map@dneg.com

Damien Maupu
Double Negative, RnD

dmu@dneg.com

Mungo Pay
Double Negative, RnD
mungo@dneg.com

Muhittin Bilginer
Double Negative, Lead FX artist

mub@dneg.com

Aleksandar Atanasov
Double Negative, FX artist

aata@dneg.com

Cristobal Infante Esquivel
Double Negative, FX artist

cies@dneg.com

Ripper crowds in Pacific Rim Uprising were created using a combination of off-the-shelf crowd simulation in Houdini, and a
number of in-house developed tools addressing specific needs. ©2018 Legendary and Universal Studios

ABSTRACT
When constructing shots of non-human crowds that exhibit com-
plex behaviors, the standard approach based on the well-established
rules of boid simulation is likely to fall short when used for a group
of characters with “intent”. In Pacific Rim Uprising, Double Negative
VFX tackled the challenge of producing a large crowd of highly ar-
ticulated robotic creatures performing the complex and coordinated
task of “assembling” a mega-Kaiju. This task required a number of
innovative approaches to both crowd authoring and rendering, and
close collaboration between the RnD and artists.

CCS CONCEPTS
• Computing methodologies→ Animation; Procedural anima-
tion; Mesh geometry models;

KEYWORDS
Crowd Simulation, Animation

ACM Reference Format:
Martin Pražák, Damien Maupu, Mungo Pay, Muhittin Bilginer, Aleksandar
Atanasov, and Cristobal Infante Esquivel. 2018. Taming the Swarm: Rippers
on Pacific Rim Uprising. In Proceedings of SIGGRAPH ’18 Talks. ACM, New
York, NY, USA, Article 4, 2 pages. https://doi.org/10.1145/3214745.3214809

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’18 Talks, August 12-16, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5820-0/18/08.
https://doi.org/10.1145/3214745.3214809

1 BUILDING THE RIPPER
The ripper character in Pacific Rim Uprising was a robotic swarm
creature resembling a biological organism. After a number of iter-
ations, the final design is similar to an insect, but with tentacles
instead of legs.

1.1 Modeling
The model of the character’s body and tentacles comprised a large
number of smaller semi-rigid parts, each with a number of “hooks”
and other details to allow it to perform the intended actions.

To cater for different production use-cases, three levels-of-detail
(LODs) of the mesh were built – the low LOD (17k polygons) was
used primarily for viewport interaction during crowd authoring; the
middle and high LODs (180k and 3M polygons respectively) were
used for rendering, selected based on the distance to the camera.
All LODs shared the same skeleton and procedural rig, allowing
for the re-use of animation.

1.2 Rigging
The ripper’s rig used a traditional combination of world and local
space controls, with 622 procedural and animated joints driving
the character’s mesh via linear skinning. The skeletal framework
required the tentacles to be represented as long chains of joints,
making them hard to control using standard IK/FK techniques. To
address that, each tentacle was built around a spline control with a
number of sliding control points. This mechanism also allowed each
tentacle to stretch and shrink, causing the separate rigid segments
to slide in and out as required.

1.3 Animation
Despite an intuitive animation interface, the sheer complexity of
animating a “walking” creature with 10 tentacles proved to be
challenging. For this reason, all ripper performances in the movie
were created using the crowd system, limiting the requirements

https://doi.org/10.1145/3214745.3214809
https://doi.org/10.1145/3214745.3214809


SIGGRAPH ’18 Talks, August 12-16, 2018, Vancouver, BC, Canada M. Prazak et al.

for manual animation. Our animators were tasked to provide 3
groups of clips – locomotion clips, carefully synchronized to allow
arbitrary blends; actions with precise transition points from and/or
to locomotion clips; and a number of individual poses that could be
layered on top of each locomotion clip.

2 CROWD
The movie sequence was split into three overlapping stages – first,
a crowd of rippers was “flooding” the streets of a city, running
towards the Kaijus; second, they formed “towers” to reach the Kaijus
and moved on the surface of their skin; and third, they performed
“cutting” and “stitching” actions, assembling a mega-Kaiju out of
several smaller creatures.

Our crowd toolset of choice was SideFX Houdini™, with a num-
ber of customizations both in framework and user-interaction.

To represent the characters, animations and caches in the pipeline,
we used a set of custom file formats, optimized for crowds. These
translated to native representations in each respective DCC – native
crowds in Houdini, animated meshes in the Isotropix Clarisse™ ren-
derer and a set of custom display nodes in Autodesk Maya™.

2.1 Steering a ripper
Houdini includes a set of powerful frameworks for particle motion
synthesis, varying in the underlying type of simulation. To give the
artists the freedom to tailor different approaches to each scenario,
we used particles to describe the behavioral part of the crowd simu-
lation. In a separate crowd animation step, we then used the particle
trajectories as steering targets (“carrots”). Finally, a boid-like “fol-
low target” behavior drove the animation synthesis, assisted by a
PD controller for faster response to direction and speed changes.

2.2 Animation synthesis
The animation of each ripper was produced using a combination of
data-driven and procedural techniques.

The data-driven core was founded on parametric motion interpo-
lation and blending. Local-space pose interpolation, used by default
in Houdini’s crowd tools, caused severe artifacts due to the com-
plexity of the rig and its motion, and the length of the tentacle joint
chains. With carefully designed animations, object-space blending
(mathematically corresponding to mesh interpolation) produced
significantly better results.

The baseline animation was then enhanced by procedural effects
– the agent’s speed influenced the amount of clip timewarping and
the amplitude of dynamic tail swing, while the agent’s angular
velocity was used to derive appropriate tail and body bending.

Motion trees provided motion transitions, with timings derived
from artist-driven events. The action-packed shots were all short
so it was never necessary to transition more than once for each
character, simplifying the motion planning.

2.3 Street level
On the street level, the client’s requested a “flood” of characters,
with appearance akin to a fluid simulation rather than a swarm of
insects.

To address this requirement, we based the crowd behavior on a
number of FLIP simulations, with driven particles (“grains”) deter-
mining the character trajectories. These were then layered on top
of each other to provide a “shifting” effect, smoothed out to remove

any jitter, and used as targets for the crowd animation synthesis.
The grain simulation also inherently handled the fixed minimum
distance between characters.

To enforce environment contacts (“tentacle-roll”), we designed a
custom IK cyclic coordinate descend (CCD) solver. However, due
to the visual complexity of the scene, it was not required.

2.4 Creeping rippers
During the third stage of the Kaiju assembly, rippers were clinging
to the surface of each moving creature, performing both locomotion
and specific cutting/sewing actions as directed by the artists.

While the creature’s surface deformed between each frame, its
topology remained consistent. By representing all particle data us-
ing barycentric coordinates and using this topological consistency
to move particles between polygons, we were able to both constrain
the particles on its surface, and transfer data between frames.

The artists’ directions were represented in two ways – via a set
of guide curves, and a set of task points, both tied to the underlying
mesh. Guide curves were evaluated into a continuous direction
field, which influenced the direction of each target particle; task
points acted as distance-triggers, activating animation transitions.

The same approach was used to create “towers” of rippers, reach-
ing for the Kaiju during the second part of the sequence. Each tower
had an underlying set of layered animated guide geometries, allow-
ing the artists to precisely sculpt the performance of the swarm.

2.5 Strands
The strands of rippers performed a major part of the “stitching”
behavior in the sequence. Their performance was based on two
steps – first, the rippers were animated on a cylinder of appropriate
length at the origin, and their position and orientation was recorded
in cylindrical coordinates. Second, a wire simulation provided the
overall target shape of a strand, and each ripper was transferred
from its original position to a position relative to the deformed
curve.

The strands themselves consisted of a number of “bands”, with
each band containing rippers performing a specific animation (e.g.,
surface interaction, different types of inter-locking). The characters
in bands at each end of the strand were constrained to the animated
surface, providing the anchor points.

3 RENDERING
The sequence was rendered using a modern path tracer in Isotropix
Clarisse™. Path tracing produces results that are more physically
correct than those produced by older object-based methods. How-
ever, the unpredictable nature of ray distribution requires the whole
scene to be contained in the main memory.

Naively representing each character as a separatemesh, amethod
we use for human crowds, proved to be extremelymemory-intensive.
Instance scattering, usually possible for “stadium-type” scenarios,
would severely constrain behavior complexity. Mesh de-duplication
was excluded by the fact that each character is procedurally articu-
lated, and there is little similarity between different character poses
in a single frame.

To obtain instantiable rigid objects, we used skinning weights to
split the mesh in the renderer to a number of segments (“calamari”).
This allowed us to render 6,000 detailed characters – a number that
would significantly exceed the memory limits without instancing.


	Abstract
	1 Building the Ripper
	1.1 Modeling
	1.2 Rigging
	1.3 Animation

	2 Crowd
	2.1 Steering a ripper
	2.2 Animation synthesis
	2.3 Street level
	2.4 Creeping rippers
	2.5 Strands

	3 Rendering

