
Session

Playlist

Playlist

Playlist

Playlist

Media

Media

Media

Timeline

Timeline

Media 

Media Source
render_v01.#.exr

Media Source
render_v01_proxy.#.exr

Media Source
 render_v01.h624.mp4

Active Video Souce

Media Source
render_v01.aif

Active Audio Souce

Media Source
 render_v01.prores.mov

Metadata

Media Source 

Media Stream
Stereo Audio Track

Media Stream
Dolby 5.1 Audio

Track

Active Audio Track

Media Stream
Video Track 1

Active Video Track

Media Stream

Full AVFrame ID Map

*DTS AVFrameID

0.0 Frame 0

0.042 Frame 1

N/Rate Frame N

AVFrameID

URI

Frame Number

Stream Index

Ref to Media Stream

xStudio Architecture - Fig 1. Media Management Data Model

Notes: 

Classes are implemented using the Message Passing Interface (MPI) 'Actor Model' design pattern using 'C++ Actor Framework'.
Each class instance executes code in inherently thread safe way on threadpool managed by framework. Highly concurrent.
The purpose of the Media Source object within the hierarchy is to resolve the universal VFX practice of generating/maintaining multiple encodings of the same visual output (and associated audio). For
example a CG render may be output at 4k EXR, from which one or more additional encodings would be created for various purposes, like lightweight motion compressed quicktime, a higher quality
review quicktime or more compressed and down-res'ed EXR proxies. By encapsulating these within the broader 'Media' class we aim to simplify the logical access to these various (usually distinct
filesystem) resources.
The Media Stream entity further resolves a Media Source into its logical internal AV components. Specific examples are containerised encodings like MP4 that can carry multiple video and (more
commonly) multiple audio tracks. Similiarly multipart EXRs are handles with a separate Media Stream for each 'part' allowing the application to enact switching between parts or displaying data relating
to those parts in the UI, say.
The Media Stream maintains a map of 'AVFrameID' which is a lightweight struct containing all the information required by a Media Reader to read and decode a single given frame of audio/video data.
The passing of these structures ultimately enables the components involved in playback to request frames for decoding, cacheing and display.

*DTS = display time stamp
Metadata

ID



Playhead

Media Reader Manager

xStudio Architecture - Fig 2. Playback Engine Components and Data Flow.

Sub Playhead

ID

Playable Source 3

IDIDIDIDIDIDIDIDID

Media Metadata

Full AVFrameID List

Playhead
Position to

AVFrameID and
DTS resolver

Frame Read
Request Queue Cache Check

Image / Audio Cache

ID
ID ID

Media Reader

Media Reader

Media Reader

ID

ID

IDID

Colour Management
Plugin (OCIO v2)

Luts and GLSL
Shader Data

IDIDIDIDIDIDIDIDID

Sub Playhead

Sub Playhead

Playable Source 1

Playable Source 2

IDIDIDIDIDIDID

Read-Ahead Requests
(low priority)

IDIDID

Immediate Display
Requests (high priority)

Immediate Frames for
Display

Playback
Timer Loop

Metadata request

Onscreen 
Media 
Metadata

Colour 
Metadata

Playhead Position

Viewport -
OpenGL, Apple

Metal (in
planning) 

Notes: 

Playheads are designed to run completely independently of UI components, with the exception of receiving a message on display refresh (framebuffer swap) to assist with video sync.
The application can support any number of running playheads.
Sub-playheads allow image data to stream from mulitple sources in sync., providing a means for comparing more than one source in an A/B mode or a contact sheet, for example.
The Playhead position is maintained to a much higher granularity than source frame rate or video refresh rate. This allows sub-playheads to play media with different playback rates and
maintain best possible synchronisation.
A valid Sub-playhead source is any entity that simply a map of type <DTS, AVFrameID> through a common message handler - in other words a list of AVFrameIDs with a timestamp
relative to the first frame. In practice this can be a Media item, a Media Source, a Timeline, an EditList, a Retimer (that wraps another source of AVFrameIDs) etc.
The sub playhead delivers multiple video frames including the current frame and one or two subsequent frames to the Viewport, each stamped with an accurate display time. 
The Viewport is responsible for displaying the right frame at draw time and starting asynchronous uploads of the following frames to GPU memory where possible. 
Media Readers attach static GLSL shader code and data to the Video Frames that they generate. This GLSL code does pixel unpacking to RGB from the raw image buffer.

Video Frame

Audio Frame

AVFrameID

Audio Output
(Soundcard)

VBlank Beat

Playback
Controller 

Duration

Frame Rate

Video Frames and Colour Data for
Immediate + Imminent Display



xStudio Architecture - Fig 3 Backend / UI 

Session

Playlist

Playlist

Playlist

Media

Media

Media

Playhead

Rendering Viewport (OpenGL)
Session QtObject

(QML Shim)

Playlist QtObject
(QML Shim)

Media QtObject
(QML Shim)

Playhead QtObject
(QML Shim)

Colour Transform
glsl funcs

ImageBuf unpack 
glslDisplay Shader

Colour LUT data

'Raw' ImageBuf

Viewport
Backend

Viewport QtObject
(QML Shim)

Viewport State 

Viewport UI Events

Generalised Qt Abstract
Data Model Viewport Attributes State

Notes: 

For most backend components a dedicated shim class exposes state data to Qt/QML for each component type
QML layer visualises backend data, interacting through the shim, so no backend execution happens in the UI layer.
Some backend components declare 'attributes' that can be exposed in the UI layer via a generalised model/delegate/view approach (e.g. toolbar buttons which are built at runtime)
Planned refactoring will make greater use of this generalised approach, we may be able to drop the 'shim' classes altogether for a full, more flexible 'runtime constructed' GUI.
Viewport renderer has no dependency on Qt and therefore can render into any OpenGL surface. It is hoped this approach will help with port to Apple metal.
All user interaction is forwarded through the application's message passing framework and as such the Viewport backend class does not have to execute within the main Qt event loop.



Plugin

Plugin QML Interface

Plugin Overlay Renderer (OpenGL)

xStudio Architecture - Fig 4 C++ Plugin

Session

Playlist

Playlist

Playlist

Media

Media

Media

Viewport Backend

Viewport UI
Events

Notes: 

There is no Plugin specific C++ API - plugins are authored like any core component of xStudio
Most xStudio classes have a public message handling interface, plugins can interact freely with core components through the MPI framework.
Core components are reachable via the public object registry 
Plugins can include OpenGL C and GLSL code to render viewport overlays
Plugins can include QML code to add new interfaces
Attributes can be used as a convenient way to define data that connects QML UI to C++/Python backend (and OpenGL renderer)
Attributes can be used to add menus, menu items and toolbar widgets to the main xStudio interface

Display Shader

At
tri

bu
te

 (fl
oa

t)

At
tri

bu
te

 (s
tri

ng
)

At
tri

bu
te

 (i
nt

)

At
tri

bu
te

 (b
oo

l)

At
tri

bu
te

 (v
ec

to
r<

flo
at

>)

Generalised Qt Abstract
List Model

Plugin / Session
Interaction via MPI

Menu
Injection

Toolbar
Injection

Hotkey and
Mouse Events



Notes: 

xStudio's MPI framework can transparently send and receive messages over a network socket
This feature allows Python plugins to run in a completely separate process, if desired
Since they run in a separate process, a Python controller with a novel PySide interface could be created, for example, that would not interfere with xStudio
playback performance
The Python API binds the MPI framework functions and types for sending and receiving messages and mirrors backend core classes.
Objects within the Session can be interacted from the Python side using their public message handlers
Attributes can be used to add menu items, standard widgets (like toolbar buttons) or custom widgets to the xStudio interface
Python plugins can also pass GLSL  and QML code to the xStudio application for creating graphics overlays or new interfaces, as required
GLSL uniforms can be automatically mapped to plugin attributes
Direct OpenGL rendering hooks are not possible, however.
C++ plugin/controllers can also be implemented in a similar way

Python 'Plugin'

At
tri

bu
te

(v
ec

to
r<

flo
at

>)

xStudio Architecture - Fig 5 Remote Control (Python)

Session

Playlist

Playlist

Playlist

Media

Media

Media

Viewport Backend

Viewport UI
Events

Display Shader

At
tri

bu
te

 (fl
oa

t)

At
tri

bu
te

 (s
tri

ng
)

At
tri

bu
te

 (i
nt

)

At
tri

bu
te

 (b
oo

l)

Generalised Qt Abstract List Model

Session, Playlist,
Media Interaction &

UI Event
Processing

Menu
Injection Toolbar

Injection

Hotkey and
Mouse Events

MPI (Python Interpreter Side)

At
tri

bu
te

 (s
tri

ng
)

At
tri

bu
te

 (s
tri

ng
) QML Interface Code

MPI (Application Side)

Socket
Connection

Attribute
Data/Events

QML Code
GLSL For
Viewport
Overlay

Py
th

on
 In

te
rp

re
te

r
(S

ep
ar

at
e 

Pr
oc

es
s)


